19 08 19

Several advices about welding equipment, MIG and TIG welders, plasma cutters. A welder is a long term investment where many find that they get what they pay for. While it is sometimes advisable to test the waters with a used model, picking the right machine the first time around can save a lot of headaches and cash in the long term. No one wants a used welder to fail in the middle of a big job or to discover that a used welder’s price can help make ends meet but the welder itself can’t make two pieces of metal meet. The best welder will complete every project that comes down the pike and minimizes limitations. This means that the most expensive welder is not always the best for each situation. However, the cheapest welding machine that can’t handle every job a welder hopes to accomplish fails to pay for itself in ways that make it worthwhile to review the possible options before investing in a welder.

5 TIG welders tricks: how to become a more skilled welder and how to choose the top welding equipment. How do I choose what size Tig Welding Rod should I use for the job? For sheet metal up to 1/8” thick, don’t use a welding rod that is bigger than the thickness of metal you are welding…at least not much bigger. A good example…is using a 3/32 rod for welding .040 metal. That will just give you a fit. The amperage is low and the weld puddle needs to be small in order to prevent blowing a hole…and then when you dip the rod into the puddle, the rod is a big heat sink and sucks the heat right out of the puddle making it hard to maintain a consistent size bead. But Beginners should probably not be practicing on really thin metal. If you are a beginner you should be practicing on around 1/8 ” thick metal, and the bigger the rod, the easier it is to feed. For 1/8 ” metal, Use larger diameter rods (3/32” to 1/8”) So here is the rule….thin metal, use a thin rod Thick metal, use a thicker rod. This might seem like a no brainer, but I have answered a lot of questions like this about the rod melting before it gets to the puddle. If torch angle and arc length are right, its usually the rod size.

In many shops, the operator has to go to a tool room or supply area for a new contact tip, coil of wire or other welding accessory. This takes valuable time away from the welding cell and slows down overall productivity. To improve the operating efficiency and minimize wasted time, companies should stock at least a limited supply of all necessary items near the welding station – this includes shielding gas, flux and wire. Another helpful productivity enhancing tip is to switch to larger spools of wire such as from 25 lb. spools to 44 or 60 lb. spools to even larger packages of 1,000 lb. reels or 1,000 lb. drums. A simple switch like this means less changeover time, which adds up over the weeks, months and years. Shops should also be on the lookout for shielding gas waste. A simple device called a surge turbine can be placed at the end of the gun to provide a digital readout of the gas surge and flow rate. If the surge rate is high, investing in a surge guard can reduce the pressure, eliminating gas surges and waste. Leaks in the gas delivery system can also create a potential loss of money. By looking at the amount of consumables purchased each year and then examining the total gas purchased, a company can determine if there is a significant loss. Welding manufacturers and distributors should be able to provide average utilization figures so that loss can be detected. If there is a loss suspected, one of the easiest ways to check for leaks is to shut off the gas delivery system over the weekend. Check the level on Friday evening and then again on Monday morning to determine if gas was used while the system was in shut down mode. Looking for the best MIG Welders? We recommend Welding Supplies Direct & associated company TWS Direct Ltd is an online distributor of a wide variety of welding supplies, welding equipment and welding machine. We supply plasma cutters, MIG, TIG, ARC welding machines and support consumables to the UK, Europe and North America.

Don’t use too much torch gas when welding aluminum on A/C. Don’t use too much torch gas when welding aluminum on A/C. Aluminum takes a lot of amperage to weld. Even though the melting temperature of aluminum is less than half that for steel, it takes about twice as much amperage to weld. Why? Because aluminum conducts heat away from the weld puddle faster than you can put it in. this brings me to an important point. Do not use more argon than necessary on your torch gas. If you do, it will be like blowing cool air on something you are trying to heat up with a torch. All that argon blowing on the part makes for a loud erratic arc because the arc force is so great. Have you ever lit up on a thick aluminum casting and listened to how loud the arc is? I bet your torch gas was up around 20 like the books recommend. That’s too much for aluminum (unless you are using an argon helium mix).

Flat-Position Welding Increases Welding Speed : It’s common knowledge that welding in a horizontal position will be the easiest and fastest way to weld. A flat position is not as taxing to maintain and the welding puddle will stay in place. Take some time to evaluate each project before beginning in order to make sure the majority of welds can be completed in this position. If a job calls for vertical welding, see this article about vertical welding. Core Wire Feeder Increases TIG Welding Speed: For professional welders hoping to speed up TIG welding, a core wire feeder will add filler metal through an automated process. Watch this video on how it works. This enables welders to work with both hands and to maintain a constant flow of wire into the welding puddle. Ed Craig at the Frabricator writes about the wire feeder process first developed in Europe, saying it is “suitable for all-position welding on materials of any thickness, the process addresses traditional GTAW limitations and can enhance both manual and automated TIG weld quality and productivity.”

Always know what gas your wire requires — whether it’s 100 percent CO2 or argon, or a mix of the two. \While CO2 is considerably cheaper than argon and good for penetrating welds on steel, it also tends to run cooler, making it usable for thinner materials. Use a 75 percent argon/25 percent CO2 gas mix for even greater penetration and a cleaner weld, since it generates less spatter than straight CO2. Here are some suggestions for shielding gases for common types of wire: Solid Carbon Steel Wire: Solid carbon steel wire must be used with CO2 shielding gas or a 75 percent CO2/25 percent argon mix, which is best used indoors with no wind for auto body, manufacturing and fabrication applications. Aluminum Wire: Argon shielding gas must be used with aluminum wire, which is ideal for stronger welds and easier feeding. Stainless Steel Wire: Stainless steel wire works well with a tri-mix of helium, argon and CO2.

First, practice handling the gun without actually welding. Rest its barrel in one hand, and support that hand on the table. The other hand operates the gun’s trigger. Stand in a comfortable position and move the gun steadily over the work surface. Adjust your posture and gun movement so that they feel natural. Attach the work lead to the workpiece, and hold the gun so the wire meets the weld surface at about a 30-degree angle. Touch the wire very lightly to the surface, squeeze the trigger, and gently pull the gun toward you to make your first test weld. The wire should melt off into the weld puddle at an even rate and make a steady crackling noise as you go. Adjust the welder settings if needed. Source: https://www.weldingsuppliesdirect.co.uk/.